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Brain computer interface (BCI) provides an alternative communication pathway between human brain
and external devices without the participation of peripheral nerves and muscles. Although the BCI tech-
niques have been developing quickly in recent decades, there still exist a number of unsolved problems,
such as instability, unreliability and low transmission rate in real time applications of BCI. In the present
study, we design a bilateral training framework for both human and the BCI system to improve recog-
nition accuracy and to reduce the impact caused by non-stationary EEG signal. The statistical analysis
ilateral adaptation
eurofeedback
rain computer interface

is used to test whether there is an obvious improvement in recognition performance after using the
bilateral adaptation strategy. The statistical analysis indicates that our algorithm is significantly different
from the existing method in both conditions of trials (p = 0.0073) and sliding time windows (p = 0.00077).
The results of statistical analysis reconfirm that performance using our algorithm is distinctly improved.
The online experiments also demonstrate that the proposed algorithm achieves higher prediction accu-
racy and reliability compared with the existing method. The objective of our research is to transfer this

l app
strategy to some practica

. Introduction

The cutting-edge research fields between bioinformatics and
omputer science have been developing dramatically recently.
rain computer interface (BCI) is now becoming one of hot research
opics due to the following three reasons. First, it provides a new
pproach to understand neurophysiologic mechanism of how brain
s executing specific task (Pfurtscheller and Neuper, 1997). Second,
CI is of practical significance in real applications. The technique
an be used for helping people with severe motor disabilities
Müller-Putz et al., 2005; McFarland et al., 1997; Kübler et al., 1999)
nd applied to clinical rehabilitation of motor functions (Duffau,
006; Daly and Wolpaw, 2008; Cooper et al., 2008). Third, it also
rovides a possibility to combine brain intelligence and machine
e.g., computer) intelligence, and people could enhance their abil-
ty of manipulating objects in the world by combining themselves’

ntelligence and machine’s intelligence.

Generally speaking, there are a number of ways of measur-
ng brain activity, such as electrical signal and blood oxygen level
ependent (BOLD) signal. Near-Infrared Reflectance Spectroscopy

∗ Corresponding author at: MOE-Microsoft Key Laboratory for Intelligent Com-
uting and Intelligent Systems, Department of Computer Science and Engineering,
oom 3-508, SEIEE Buildings, Shanghai Jiao Tong University, Shanghai 200240,
hina. Tel.: +86 02154748390.

E-mail addresses: juhalee@sjtu.edu.cn (J. Li), zhang-lq@cs.sjtu.edu.cn (L. Zhang).
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oi:10.1016/j.jneumeth.2010.09.010
lications (e.g., electrical wheelchair control) for the better performance.
© 2010 Elsevier B.V. All rights reserved.

(NIRS) (Xu et al., 2007) and Functional Magnetic Resonance Imag-
ing (fMRI) (Ciuciu et al., 2008) are based on the measure of BOLD
signal. Electrical signal is acquired from electrodes mounted on the
surface of scalp or implanted into the tissue of brain, namely, non-
invasive or invasive manners. For the invasive manner, electrodes
should be implanted into the brain or laid on the cortex surface
of the brain. For example, Ikeda and Shibbasaki (1992) recorded
movement-related cortical potentials through an invasive system.
Although such an invasive system has the higher spatial resolution,
it is easy to cause the damage of users’ brain tissue. In this paper, we
rather concentrate on noninvasive BCI based on Electroencephalo-
gram (EEG) measurements (Keirn and Aunon, 1990).

EEG signal has an advantage in temporal resolution compared
with BOLD signal. But it also suffers a number of drawbacks for
BCI based on motor imagery such as temporal variation of EEG.
A model trained several days ago (even a few hours ago) is no
longer suitable to classify the current EEG data due to EEG variation
over time. Therefore, a practical BCI system should be continually
adapted to track user’s current EEG pattern in order to achieve a
good performance. A number of adaptation strategies have been
proposed for adaptive BCI systems in recent years. Usually adap-
tive technique can be applied to feature extractor, classifier, or

both of them. Parameters in these models, such as mean and vari-
ance, are continually updated for the purpose of tracking the EEG
state of the subject. Vidaurre et al. (2006) used an adaptive autore-
gressive model for extracting features and an adaptive Quadratic
Discriminant Analysis (QDA) for pattern classification. In addition,

dx.doi.org/10.1016/j.jneumeth.2010.09.010
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:juhalee@sjtu.edu.cn
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Fig. 1. Sketch map of bilateral training process. Green arrow represents BCI system
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the right side. Left bar is increased while subject is imagining left
raining. Red arrow represents humans training. Dots mean to continually repeat
raining over the whole experiment time. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of the article.)

he adaptive Linear Discriminant Analysis (LDA) and Bayesian clas-
ifier are usually adopted as adaptation of classifier (Shenoy et
l., 2006; Sykacek et al., 2004). It should be highlighted that the
iteratures mentioned above just used single feature extractor or
lassifier, thus any mistakes caused by feature extractor or classifier
annot be corrected.

In order to improve the robustness of BCI system, we suggest
hat EEG data is projected into several different subspaces and
s classified by several different hyperplanes (classifiers) in our
ilateral training framework. The voting strategy is employed to

mprove accuracy of BCI system. First, each hyperplane separating
EG data is trained as a voting machine, then these voting machines
re constructed a strong classifier by using committee voting
ule so as to achieve the better classification performance. Previ-
us studies mainly emphasize on improving BCI system by using
daptation of BCI models while ignoring human neuro-feedback
daptive adjustment, which is considered as another dimension
o improve performance of BCI. In our bilateral training frame-
ork, we take human factors into consideration during training a
ractical BCI system. Subjects are requested to adjust their brain
ctivities according to neuro-feedback reflecting ongoing neural
ctivities and to try their best to conduct correct tasks of motor
magery. We call this course as human training. Fig. 1 shows the
rocess of the bilateral training framework. BCI model training and
uman training are implemented alternately. Human and BCI sys-
em are both trained in order to adapt to each other and gradually
ttain a dynamic equilibrium. Hence, the reliability of system is
mproved due to the mutual adaptation of human subject and BCI

odel.

. Bilateral training framework

Bilateral training framework is divided into two parts: BCI sys-
em training and human training. The objective of BCI system
raining is to train a BCI model by using EEG data recorded during
ubject training so as to achieve a good generalization performance.
he subject modulates his/her own brain activities to make BCI

ystem classify his/her EEG signals more correctly based on neuro-
eedback principle during human training. Classification accuracy
ill be gradually improved by interaction between subject modu-

ation and BCI system adaptation.
e Methods 193 (2010) 373–379

2.1. BCI system training

The BCI system training consists of the following three steps:
EEG signal preprocessing, feature extraction and pattern learning.
In the signal preprocessing stage, we mainly dealt with the artifact
removal, baseline drift and so forth. Artifacts, such as EOG and EMG,
should be removed from EEG recordings. At the same time, a visual
feedback was given to subject as an indication of artifacts. Subject
should try to keep any portion of body motionless when the indica-
tion of artifacts was displayed on the screen. The EEG signals after
removing artifacts were further processed by using a band-pass
filter with bandwidth between 8 and 30 Hz. At the feature extrac-
tion stage, we employed common spatial patterns (CSP) (Anthony
and Zoltan, 1995; Ramoser et al., 2000) to extract features from
EEG signals. Those features obtained based on the optimal compo-
nent separation property of CSP are optimal for discriminating two
populations of EEG.

A segment of EEG signal is represented as an N by T matrix E,
where N is the number of recording electrodes and T is the number
of samples per electrode in a segment. A segment E is projected
into space of common special patterns as orthogonal components
by the projection matrix V. So a segment of EEG is decomposed as

Z = VE. (1)

We will obtain 2m time series if m largest eigenvectors of each
group are chosen. Then the 2m features are calculated for a segment
(EEG data) by following equation:

featurei =
T∑

t=1

(zi(t))2 i = 1, 2, . . . , 2m, (2)

where zi represents row of Z, t is sampling time of a segment. In
order to normalize the distribution of elements, features are reeval-
uated by the following equation:

featurei = log

(
featurei∑2m
j=1featurej

)
. (3)

Those features are used to train a support vector machine (SVM)
classifier (Vapnik, 1995; Hearst et al., 1998).

2.2. Human training

It usually is not sufficient to improve performance of BCI system
without considering the quality of signal source. It is because some
signals measured from a few subjects are mingled with each other
and is unclassifiable essentially, even the best classified algorithm
used in BCI system cannot classify the signals with a satisfactory
performance. Hence, a signal source of high quality is critical for
the BCI system’s performance. For the purpose of getting the sig-
nals with high quality, a subject has to generate EEG patterns which
are easily recognized by the BCI system. It becomes easier for a
human subject to enhance own brain activities corresponding to
the cues if a neuro-feedback is given. Under the circumstances, the
subject can immediately adjust own brain activities according to
visual feedback on the computer screen. To this end, in our training
framework, we design two rectangular bars on the screen as feed-
back to indicate which task the subject is imagining now. During
the experiments, there are two rectangular bars displayed on the
screen, one is near the left side of the screen and the other is near
movement. The opposite bar is increased while subject is imagin-
ing right movement (Fig. 2). The subject should strive to maintain
the imaginary movement of given direction (direction of the arrow,
see Fig. 2) and make corresponding bar increase.
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Fig. 2. The feedback displayed on the screen. Accuracy is displayed on top of the
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creen. The rectangular bars show neurofeedback in real time. Artifacts indication
s given to subject when artifacts are found by the BCI system.

.3. Interaction between human training and BCI system training

In bilateral training framework, EEG signal adjustment and BCI
ystem updating are executed alternately. With mutual adjustment
oes on, the classification accuracy will be raised gradually. Dur-
ng the experiments, subject tries to make BCI system improve the
lassification accuracy by modulating his/her brain activities. At
he same time, the BCI system is also updated across sessions. We
rain the first model using EEG data of the first session. The second

odel is trained by not only EEG data from the second session but
lso the first session (see Fig. 3). EEG data used for training is cho-
en randomly from each of last five sessions according to a specific
roportion. We set the highest proportion for the latest session.

he proportion is declined by degrees from the latest session to the
revious sessions up to the fifth prior session. The proportion of

ig. 3. The flow chart of interaction between humans training and BCI system train-
ng. A segment EEG is classified respectively by each model. The result is given by

eighted outputs of each model. The EEG data of a trial is saved if J (see Eq. (8))
s greater than threshold given, otherwise discarded. The most previous model is
eplaced by latest model when the number of models is more than five. According
o this rule, models are constantly updated.
Methods 193 (2010) 373–379 375

training data from each session is defined as

Psn = In∑nmax
i=1 Ii

(n ∈
{

1, 2, 3, 4, 5
}

), (4)

where I = [I1 I2 I3 I4 I5] = [1 3 5 7 9], nmax is the maximum value in the
parameter n. n equals the number of sessions when the number of
sessions is not more than five, and the value of n will always be
the same five when the session started from the sixth. The propor-
tion of training data from the latest session decrease from the first
session to the fifth session respectively 1, 3/4, 5/9, 7/16, 9/25. But
the proportion of the latest session is higher than that of all previ-
ous sessions. The reason is that the importance of the latest session
reduces with sessions go, but the data from the latest session is still
the most important.

The output of each model is weighted to produce the result of
classification for EEG of every sliding time window. The classifica-
tion result of a trial is obtained by averaging within all probabilistic
outputs of sliding time windows. The weight of each model ai is
calculated by

ai = ai∑5
j=1aj

, (5)

aj = −1
2

log
(

1 − TA

TA

)
, (6)

where TA is the training accuracy corresponding to each model. A
model which has the higher training accuracy is the more reliable.
Hence, we give it a higher weight. The classification result of each
sliding time window is obtained by weighting all outputs of models.

Pr o =
5∑

i=1

ai × oi, (7)

where o is probabilistic output of each model corresponding to
given class. ai is obtained by Eq. (5). The EEG data of a trial is stored
if J is greater than threshold given (we set threshold as 0.55, except
subject 4 for 0.75). J is defined as follows:

J = 1
M

M∑
k=1

Pr ok, (8)

where M is the number of sliding time windows.

3. Experimental setup

3.1. Subjects

The subjects participated in this study are six adults without
any sensory-motor diseases or history of psychological disorders.
All subjects had not attended related BCI experiments previously
and were given introduction before experiments. Their age ranges
from 23 to 26 years old and two of them are female. All subjects
have given their written informed consent for the study.

3.2. EEG signals recording

We recorded EEG signals from fourteen channels with a dig-
ital DC EEG amplifier (Neuro Scan System). All electrodes were
mounted in a standard EEG cap according to the 10-20 international
system. The distribution of electrodes used in our experiments

is shown in Fig. 4. The EEG recordings were referenced to the
blue electrodes and grounded at the electrode of GND. Fourteen
electrodes used for recording were placed on the region related
to sensorimotor cortex. Electrodes’ impedances were kept below
5 k�. All electrodes were digitized at 250 Hz.
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was useful for performance. We compared the two conditions. One
ig. 4. The distribution of electrodes using in experiments. Green electrodes were
sed for collecting EEG data. Blue electrodes were as reference. Yellow electrode is
round. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of the article.)

.3. Experimental paradigm

The subjects sat still in a comfortable chair facing a 22-in.
ide-screen monitor 1.2 m away (see Fig. 1), and were asked to

emain motionless during sessions. Each subject participated in
wo experimental paradigms. One is a normal training paradigm
orresponding to the existing method. Subjects took part in differ-
nt number of sessions ranged from seven to ten (see Table 1 for
ach subject in detail). There were 2 min for rest between succes-
ive sessions. Each session consisted of twelve trials separated by
ntervals of 2 s. The word ‘Attention’ was displayed on the screen
or 3 s at the beginning of each session. A trial was 4 s long and con-
isted of 25 sliding time windows. The width of sliding time window
as 1000 ms. The time window slid forward every 125 ms till the

nd of a trial. After a session, a trial was divided into segments of
s length with an overlap of 87.5%, resulting in 25 segments per

rial. So a total of 300 samples were used for training in the normal
raining paradigm.

With regard to bilateral training paradigm, the configuration
f trials for subject adaptation is the same as normal training
aradigm. The difference is combination between human training
nd BCI system training as described in the section bilateral train-
ng framework. In bilateral training paradigm, subjects completed
adaptive procedure in each session after 12 pure trials EEG data
ere successfully collected, where the ‘pure trial’ means the mean

f probability corresponding to correct class (J, see Eq. (8)) is greater
han threshold given (see Table 1). The session also stopped when
he amount of trials reached to maximal number (we set it as 24).
ence, each session would stop within brown block, as shown in
ig. 5. The numbers of trials consisted of a session varied among
ifferent sessions of each subject. It is noticed that the number of
ure trials collected in bilateral training paradigm in one session

s not larger than 12. And the total number of pure trails chosen

rom last all five sessions also is not larger than 12 due to the pro-
ortion normalization (see Eq. (4)). Hence, the number of samples
EEG segments) for training is not larger than 300 after dividing
rials.
e Methods 193 (2010) 373–379

4. Results

4.1. On-line performance comparison

We tested two paradigms online to assess performance. In
the aspect of accuracy, the bilateral training paradigm (BTP)
outperformed the normal training paradigm (NTP). The average
classification accuracy in trials across all sessions of all subjects was
86% and 76.99% for bilateral training paradigm and normal train-
ing paradigm respectively. We carried out performance comparison
from the sixth session of bilateral training paradigm because five
models used in bilateral training paradigm had already been trained
at that point. For some subjects, the number of sessions in which
they participated is different in two different paradigms. So we
compared performance from the sixth session to the last session of
one of the two paradigms. From Fig. 6, we can see that all subjects
achieved better performance when bilateral training paradigm was
employed in experiment. In particular, the average accuracy in tri-
als using BTP was significantly higher than that of NTP for subject 2.
The recognition accuracy would be improved when averaging prob-
abilistic outputs of all sliding time windows during a trial (which
is equivalent to voting). We, furthermore, compared BTP with NTP
in terms of the accuracy of sliding time windows so as to eliminate
the effect of that mentioned above. The overall mean of recognition
accuracy in sliding time windows was 79.2% and 70.29% for BTP and
NTP respectively. The results showed that improvements on recog-
nition rates can be again obtained by using BTP for all subjects.
Table 1 shows detailed information to each subject with different
paradigms.

For the variation of classification accuracy across sessions, BTP
was smoother than NTP. As seen from Fig. 6, the variation of classifi-
cation accuracy between sessions was larger corresponding to NTP.
In other words, the curve of NTP was more fluctuant than that of
BTP. This phenomenon was more obvious for subject 4. Therefore,
BTP has a better reliability for EEG signal classification.

4.2. Statistical analysis

The statistical analysis was employed to test whether there was
an obvious improvement in recognition performance after using
the bilateral adaptation strategy. A paired t-test was used to com-
pare the overall performance of BTP with NTP across all subjects.
Results of the paired t-test indicated that recognition accuracy of
BTP was significantly higher than recognition accuracy of NTP in
both conditions of trials (p = 0.0073) and sliding time windows
(p = 0.00077). Furthermore, we verified the performances across
sessions for each subject and listed the results in Table 2. The results
showed recognition accuracy using BTP was significantly improved
for most of subjects (except for subject 3).

4.3. Off-line analysis

We performed an off-line analysis to investigate which of the
aspects of algorithm used in the BTP were actually effective for
performance improvement. The data used for off-line analysis
was collected from the NTP of subject 4. In the first analysis, we
addressed whether the ‘pure’ trial selection was necessary. To this
end, we evaluated performance of models which were trained in
‘pure’ trials in comparison to all trials of a session. The second anal-
ysis was to explore whether the method of training data randomly
chosen from previous sessions according to a specific proportion
is training data proportionally and randomly come from previ-
ous five sessions. The other is training data come from the latest
session. For instance, the data proportionally and randomly cho-
sen from the second session to the sixth session was used for
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Table 1
The parameter setting and recognition accuracy for each subject. The thresholds are listed in the second column. NS is the number of sessions in normal training paradigm. AT
represents average recognition accuracy in trials across all sessions by percentage. AW represents average recognition accuracy in sliding time windows across all sessions
by percentage. B represents bilateral training paradigm. N represents normal training paradigm. The overall mean averaging each column is shown in the last row.

Subject T NS AT(B) AT(N) AW(B) AW(N)

1 0.55 10 89 79.1 82.31 70.83
2 0.55 10 93.4 76.7 79.86 67.8
3 0.55 7 70.73 65.57 62.77 57.99
4 0.75 10 97 95.1 94.2 87.22
5 0.55 8 97 86.38 92.69 81.62
6 0.55 10 68.9 59.1 63.38 56.26

Overall mean 86 76.99 79.2 70.29

Attention
3 S 2 S

A Trial

1000ms125ms
width of sliding time window

25 sliding time windows per trial

4 S 2 S

A Trial A Trial

Interval

A Trial A Trial

2 S4 S 4 S

12 Trials

Computer TrainingHumans Training

Fig. 5. The time arrangement of bilateral training. The word “Attention” was displayed on the screen for 3 s at the beginning of each session. The interval between trials was
2 s. A trial was 4 s long and consisted of 25 sliding time windows. Structure of a trial was enlarged inside the dashed border.

Table 2
The significant differences for recognition accuracy in condition of sliding time windows. The p is the paired t-test used in condition of sliding time windows.
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Subject 1 2

p 0.018 0.0001

raining model A. The total number of chosen data used for train-
ng model A is equivalent to the number of a session. Only the
ata of the sixth session was used for training model B. Then, we
ompared the recognition accuracy of model A with the model

. The rest can be done in the same manner. In the third anal-
sis, we compared multi-models with single model. The data of
ne session was used for training a model and five models com-
ined to form the multi-models. The single model was trained
sing all data of five sessions. The results of off-line analysis are

able 3
he off-line analysis results. PTS represents recognition accuracy when ‘pure’ trial selec
election. W refers to recognition accuracy of model which is trained using the data propor
ccuracy of model trained in the latest session data. MM denotes recognition accuracy of
f five sessions.

Session PTS NPTS W

3 98.26 97.57
4 93.75 93.75
5 94.44 95.14
6 86.81 86.81
7 89.58 86.46 93.06
8 77.08 81.25 87.5
9 97.92 90.63 95.14

10 96.18 95.83 96.53
4 5 6

7 0.048 0.029 0.039

listed in Table 3. The comparison indicated that ‘pure’ trial selec-
tion hardly made a contribution to performance improvement. The
recognition accuracy was almost same after utilizing the strategy
of ‘pure’ trial selection. However, training data proportionally and

randomly chosen from previous five sessions was useful for perfor-
mance improvement. We found it’s dominant in all sessions (from
session 7 to session 10). With regard to multi-models, off-line anal-
ysis showed the multi-models, overall, was better than the single
model.

tion is used. Contrarily, NPTS represents recognition accuracy without ‘pure’ trial
tionally and randomly chosen from previous five sessions. NW refers to recognition
multi-models. SM denotes recognition accuracy of single model trained in all data

NW MM SM

86.46 96.53 95.49
81.25 85.42 88.19
90.63 99.31 96.88
95.83 97.92 97.22
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Fig. 6. A comparison in classification accuracy of the bilateral training paradigm (BTP) and the normal training paradigm (NTP). Red squares represent classification accuracy
of BTP. In contrast, green squares represent classification accuracy of NTP. The bars drawn on the left of each graph indicates the mean of classification accuracy over all
s e firs
f are sta
i to the

5

a

essions starting with the sixth session (red bar for BTP and green bar for NTP). Th
ourth row show accuracy in sliding time windows for each subject. The squares
nterpretation of the references to color in this figure legend, the reader is referred
. Discussion and conclusion

This study combines human training and BCI system training so
s to reduce the impact caused by non-stationary EEG signal and
t row and third row show accuracy in trials for each subject. The second row and
ggered for clear viewing when red square and green square are overlapped. (For
web version of the article.)
improving the recognition accuracy of BCI. Compared with normal
training paradigm, the proposed paradigm using bilateral adapta-
tion strategy achieves higher recognition accuracy. In addition, it is
also observed that the bilateral training paradigm has better relia-
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ility. The reasons why bilateral training paradigm is more suitable
or EEG signal classification can be explained as follows.

The model used in bilateral training paradigm is updated in real-
time by the EEG data from not only the current session but also the
previous sessions. Hence, the model learns the latest information
in time, meanwhile the information of the previous sessions is not
lost. In contrast, the model used in the normal training paradigm
just learns the latest information.
All EEG data signals are used to train the model in normal training
paradigm. In this way, the model simultaneously learns useless
features for classification, even some features disturbed correct
discrimination, while model is learning helpful features. Our
method discards interferential EEG signals and only reserves EEG
signals which are correctly classified in previous sessions for
training model. Moreover, the model not only learns from the
data of one previous session, but also from the data of a specific
previous period. In addition, the system runs online and new data
can be acquired over time for online system adaptation.
There are five models in bilateral training paradigm. Each model is
equivalent to a voting machine. The classification performance is
enhanced by a combination of several voting machines. The out-
puts of five models are weighed to produce classification result.
Weights are obtained according to training accuracy. Each weight
indicates the reliability of corresponding model.
Last but not least important, subjects are able to adjust immedi-
ately their own brain activities according to neuro-feedback. This
is a good way for subjects to train how to control their own brain
activities.

We also employed statistical analysis to reconfirm the com-
arison of two paradigms. The results of paired t-test illustrated
ilateral training paradigm using bilateral adaptation strategy sig-
ificantly outperformed normal training paradigm corresponding
o the existing method in both conditions of trials and sliding
ime windows. Further more, we performed an off-line analy-
is to investigate which of the aspects of algorithm used in the
TP were actually effective for performance. As seen from results,

raining data proportionally and randomly chosen from previous
essions and multi-models are useful for performance. For practi-
al or clinical applications, high recognition accuracy and reliability
re necessary. Therefore, improving performance of BCI systems is
mportant for transferring BCI technique to practical applications.
Methods 193 (2010) 373–379 379
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